Skip to main content
Infrastructure Resilience Conference 2018

Full Program »

Design Elements for the Implementation of Resilience in Socio-Technical Systems

Energy systems are confronted with increasing complexity and uncertainty in several dimensions: technology, climate change, cyber-physical threats, etc. Some of the new challenges and threats are characterised by irreducible uncertainties, calling for a design paradigm that takes into account “unknown unknowns” and surprise. The resilience principle is, to our knowledge, the best approach to implement such a precautionary paradigm [Goessling-Reisemann 2013b]. In addition to the challenges described above, the societal demands on energy systems with respect to acceptability and sustainability are high, potentially even growing. With the increasing share of renewables in the system, the geographical dispersion, the volatility and the exposition of society towards energy infrastructures are growing as well, adding to the complexity challenge for energy systems. In this context, energy systems need to be understood as socio-technical systems with their development being heavily influenced by societal preferences and their service being ever more critical for a functioning society [Brand 2016]. The resilience of energy systems is thus deeply coupled with the resilience of society.

The concept of resilience in the context of energy system analysis and design is growing in popularity with many schools of thought coexisting. There exist several different definitions of resilience in the context of social science, engineering, ecosystem theory and other disciplines [Lovins & Lonvins 1982, Holling 1996, Brand 2005, Hollnagel 2006]. We are basing our approach on a definition for socio-technical systems: such a system is called to be resilient, if it is able to maintain its system services under stress and turbulence [Gleich et al. 2010]. Turbulence in this context is characterised by highly dynamic changes of internal and external conditions, irregular behaviour, limited predictability, and surprise.

Considering typical stressors acting on energy systems, it is possible to characterise the necessary properties to achieve resilience [Stuehrmann et al. 2012]. When stressors are broadly categorized into slowly / fast developing stressors and known/unknown stressors, we can identify four basic capabilities necessary for resilience: robustness, adaptive capacity, innovation capacity and improvisation capacity [Brand et al. 2017]. Specific components for energy systems that improve the performance of the system under stress and manifest the needed capabilities, were identified by literature research and analysis of approaches in other disciplines, resulting in a list of design elements, like diversity, redundancy, modularity, etc. [Goessling­Reisemann et al. 2013b]. This resilience approach has been developed theoretically and applied on the design level in several projects funded by the German ministry for education and research between 2008 and today. It is currently being used to systematically design and implement an urban energy system geared towards full integration of renewables in all sectors.

This presentation will illustrate the development of the approach [Goessling-Reisemann 2013a, Wachsmuth 2013] and highlight some concrete applications in the field of resilient cyber-physical energy systems and assessment of policy measures. We will also briefly discuss open research questions.

Literature Brand, F. (2005): Ecological Resilience and Its Relevance within a Theory of Sustainable Development; UFZ-Report 03/2005. Available online: https://www.ufz.de/export/data/global/29235_ufz_bericht_03_2005.pdf Brand, U., & von Gleich, A. (2015): Transformation toward a Secure and Precaution-Oriented Energy System with the Guiding Concept of Resilience-lmplementation of Low-Exergy Solutions in Northwestern Germany. Energies, 8, 4995-7019 Brand, U. (2016): Leitkonzepte Nachhaltigkeit und Resilienz als Richtungsgeber in Transformationsprozessen von Energiesystemen. Dissertation. Universität Bremen, Bremen.

Brand, U., & von Gleich, A. (2017a): Guiding Orientation Processes as Possibility to Give Direction for System Innovations-the Use of Resilience and Sustainability in the Energy Transition. NanoEthics 11(7) · DOI: 10.1007 /s11569-017-0288-3 Brand, U., Giese, B., von Gleich, A., Gößling-Reisemann, S., Heinbach, K., Petschow, U., Schnülle, C., Stührmann, S., Stührmann, T., Thier, P., Wachsmuth, J., Wigger, H.; (2017b), Auf dem Weg zu Resilienten Energiesystemen! Resiliente Gestaltung der Energiesysteme am Beispiel der Transformationsoptionen „EE-Methan-System" und „Regionale Selbstversorgung; Projekt­Abschlussbericht RESYSTRA, Universität Bremen (in print) Von Gleich, A.; Gößling-Reisemann, S.; Stührmann, S.; Woizeschke, P. (2010): Resilienz als Leitkonzept-Vulnerabilität als analytische Kategorie. In Theoretische Grundlagen für Klimaanpassungsstrategien; Fichter, K., von Gleich, A., Pfriem, R., Siebenhüner, B., Eds.; Universities of Bremen and Oldenburg: Bremen/Oldenburg, Germany, pp. 13-49.

Goessling-Reisemann, S., Wachsmuth, J., Stuehrmann, S., & von Gleich, A. (2013a). Climate change and structural vulnerability of a metropolitan energy supply system - the case of Bremen-Oldenburg in Northwest Germany. J Ind Ecol, 17, 846-858. Gößling-Reisemann, S., Stührmann, S., Wachsmuth, J., & von Gleich, A. (2013b). Vulnerabilität und Resilienz von Energiesystemen. In J. Radtke, B. Hennig (Ed.), Die deutsche „Energiewende" nach Fukushima - Der wissenschaftliche Diskurs zwischen Atomausstieg und Wachsmtumsdebatte (pp. 367-395), Marburg: Metropolis-Verlag. Gößling-Reisemann, S.; Stührmann, S.; Wachsmuth, J.; von Gleich, A.; Blöthe, T. (2015): Klimaanpassung und Resilienz in der Energiewirtschaft. In Regionale Klimaanpassung im Küstenraum; von Gleich, A., Siebenhüner, B., Eds.; Metropolis-Verlag: Marburg, Germany; pp. 182-206.Hollnagel, E., Woods, D. D. & Leveson, N. C. (2006): Resilience engineering: Concepts and precepts. Aldershot, UK: Ashgate. Helling, C. (1996): Engineering resilience vs. ecological resilience. In Engineering within Ecological Constraints; Schulze, P.C., Ed.; National Academy Press: Washington, DC, USA; pp. 31-44. Lovins, A.B.; Lovins, L.H. (1982): Brittle Power: Energy Strategy for National Security; Brick House Publishing Company: Andover, MA, USA. Stührmann S, Gleich A von, Brand U, Gößling-Reisemann S (2012): Mit dem Leitkonzept Resilienz auf dem Weg zu resilienteren Energieinfrastrukturen. In: Decker M, Grunwald A, Knapp M, editors. Der Systemblick auf Innovation - Technikfolgenabschätzung in der Technikgestaltung. Berlin: edition sigma Wachsmuth, J., Blohm A., Goessling-Reisemann, S., Eickemeier, T., Gasper, R., Ruth, M., & Stuehrmann, S. (2013). How will renewable power generation be affected by climate change? -The case of a metropolitan region in Northwest Germany. Energy, 58, 192-201. Wachsmuth, J.; Petschow, U.; Brand, U.; Fettke, U.; Pissarskoi, E.; Fuchs, G.; Dickei, S.; Kljajic, M. (2015). Richtungsgebende Einflussfaktoren im Spannungsfeld von Zentralen vs. Dezentralen Orientierungen bei der Energiewende und Ansatzpunkte für ein Leitkonzept Resilienz. RESYSTRA-Diskussionspapier 1; University of Bremen/IOEW: Bremen/Berlin, Germany, Available online: http://www.resystra.de/files/publikationen/richtungsgebende-einflussfaktoren.master.pdf (accessed on 28th of January 2016). (In German)

Pablo Thier
University of Bremen, Department of Resilient Energy Systems
Germany

Stefan Gößling-Reisemann
University of Bremen, Department of Resilient Energy Systems
Germany

 

Powered by OpenConf®
Copyright ©2002-2016 Zakon Group LLC